skip to main content


Search for: All records

Creators/Authors contains: "Smith, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Faculty at research institutions play a central role in advancing knowledge and careers, as well as promoting the well-being of students and colleagues in research environments. Mentorship from experienced peers has been touted as critical for enabling these myriad roles to allow faculty development, career progression, and satisfaction. However, there is little information available on who supports faculty and best ways to structure a faculty mentorship programme for early- and mid-career academics. In the interest of advocating for increased and enhanced faculty mentoring and mentoring programmes, we surveyed faculty around the world to gather data on whether and how they receive mentoring. We received responses from 457 early- and mid-career faculty and found that a substantial portion of respondents either reported having no mentor or a lack of a formal mentoring scheme. Qualitative responses on the quality of mentorship revealed that the most common complaints regarding mentorship included lack of mentor availability, unsatisfactory commitment to mentorship, and non-specific or non-actionable advice. On these suggestions, we identify a need for training for faculty mentors as well as strategies for individual mentors, departments, and institutions for funding and design of more intentional and supportive mentorship programmes for early- and mid-career faculty.

     
    more » « less
    Free, publicly-accessible full text available December 20, 2024
  2. Abstract

    Our sense of balance is among the most central of our sensory systems, particularly in the evolution of human positional behavior. The peripheral vestibular system (PVS) comprises the organs responsible for this sense; the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule; detecting linear acceleration, vibration, and head tilt). Reconstructing vestibular evolution in the human lineage, however, is problematic. In contrast to considerable study of the canals, relationships between external bone and internal membranous otolith organs (otolith system) remain largely unexplored. This limits our understanding of vestibular functional morphology. This study combines spherical harmonic modeling and landmark-based shape analyses to model the configuration of the human otolith system. Our approach serves two aims: (1) test the hypothesis that bony form covaries with internal membranous anatomy; and (2) create a 3D morphometric model visualizing bony and membranous structure. Results demonstrate significant associations between bony and membranous tissues of the otolith system. These data provide the first evidence that external structure of the human otolith system is directly related to internal anatomy, suggesting a basic biological relationship. Our results visualize this structural relationship, offering new avenues into vestibular biomechanical modeling and assessing the evolution of the human balance system.

     
    more » « less
  3. In this work, we establish a physical access control mechanism for vehicular platoons. The goal is to restrict vehicle-to-vehicle (V2V) communications to platooning members by tying the digital identity of a candidate vehicle requesting to join a platoon to its physical trajectory relative to the platoon. We propose the Wiggle protocol that employs a physical challenge-response exchange to prove that a candidate requesting to be admitted into a platoon actually follows it. The protocol name is inspired by the random longitudinal movements that the candidate is challenged to execute. Wiggle prevents any remote adversary from joining the platoon and injecting fake V2V messages. Compared to prior works, Wiggle is resistant to prerecording attacks and can verify that the candidate is traveling behind the verifier in the same lane. 
    more » « less
  4. Abstract Although greenhouse gases absorb primarily long-wave radiation, they also absorb short-wave radiation. Recent studies have highlighted the importance of methane short-wave absorption, which enhances its stratospherically adjusted radiative forcing by up to ~ 15%. The corresponding climate impacts, however, have been only indirectly evaluated and thus remain largely unquantified. Here we present a systematic, unambiguous analysis using one model and separate simulations with and without methane short-wave absorption. We find that methane short-wave absorption counteracts ~30% of the surface warming associated with its long-wave radiative effects. An even larger impact occurs for precipitation as methane short-wave absorption offsets ~60% of the precipitation increase relative to its long-wave radiative effects. The methane short-wave-induced cooling is due largely to cloud rapid adjustments, including increased low-level clouds, which enhance the reflection of incoming short-wave radiation, and decreased high-level clouds, which enhance outgoing long-wave radiation. The cloud responses, in turn, are related to the profile of atmospheric solar heating and corresponding changes in temperature and relative humidity. Despite our findings, methane remains a potent contributor to global warming, and efforts to reduce methane emissions are vital for keeping global warming well below 2 °C above preindustrial values. 
    more » « less
  5. Abstract

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers (SLCFs) and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s ‘Stated Policies’ Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and SLCFs, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5by over 6 Mt (99%) by 2040, which would substantially lower health risks from household air pollution. Full transitions to LPG or grid electricity in LMICs improve climate impacts over BAU trajectories.

     
    more » « less